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Hamiltonisation of classical non-holonomic systems 
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Departamento de Fisica, CCEN, Universidade Federal da Paraiba, 58.000 JoHo Pessoa, 
Paraiba, Brazil 

Received 28 May 1986, in final form 12 August 1986 

Abstract. A Hamiltonisation for non-holonomic dynamical systems is developed. An 
example is given. 

1. Introduction 

Non-holonomic systems (Neimark and Fufaev 1972, Saletan and Cromer 1970, 1971) 
are seen to be very interesting and intriguing mechanical systems mainly when one 
looks for a quantisation procedure (Eden 1951, Gomes and Lobo 1979, Abud Filho 
et a1 1983). The basic problem rests in the difficulty of presenting a Hamiltonian 
function for such systems. In fact, even the determination of a Lagrangian function 
describing completely the dynamics of the system is not an easy task. As an additional 
difficulty this Lagrangian is a singular function in the Dirac sense (Galvgo and Negri 
1983). 

The main goal of this paper is to show how one can find a Hamiltonian function 
for a given non-holonomic system without using Dirac’s theory (Dirac 1950, 1964). 
As our technique will lead to a family of Hamiltonian functions separate from subsidiary 
conditions it could also be expected to be an easier quantisation procedure. 

To formally set up the problem which we will be interested in, let us first consider 
the usual Lagrangian description for a non-holonomic system. We have a free 
Lagrangian 

(1.1) u q ,  4, t )  = U q , ,  . . . , q N ;  4 1 , .  . . , 4 N ,  t )  

@”(% 4, t >  = 0 

and some subsidiary non-integrable conditions 

/A = 1, .  . . , K ( K  < N ) .  (1.2) 

The dynamical evolution of the system in configuration space is obtained from 
(1.2) and 

where A ”  are the Lagrange multipliers (Saletan and Cromer 1970, 1971). The summa- 
tion convention is adopted and i, j ,  k, . . . = 1 , .  . . , N ;  p = 1, . . . , K ( K  < ,V). 

The allowed orbits for the system are obtained by first eliminating the A among 
equations (1.3) and 

d@”/dt  = 0 (1.4) 
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(which result from the imposition of the temporal preservation of the constraints), and 
solving a set of equations which comes to be of the following form: 

q, = J ( q ,  4, t )  (1.5) 

@ . , ( q , 4 , t ) = O .  (1.2) 

It is now possible to define our problem: to find a class of Hamiltonian functions 
that leads to the same orbits as (1.2) and (1.5) when we change from a phase space 
to a configuration space description. Let H ( q ,  p ,  t )  be a member of the desired class 
of Hamiltonians. The corresponding canonical equations are 

q1 = a H / a p ,  (1.6) 

p, = -aH/aq,.  (1.7) 

These equations furnish the orbits of the system in phase space. The reduction to 
configuration space is attained after eliminating p I  and pt between equations (1.6) and 
(1.7). In fact, under suitable conditions we may differentiate (1.6) with respect to time 
and then eliminate p I  and p I  with the use of (1.6) and (1.7), arriving at a system of 
equations of the form 

(1.5') 

Our problem is then to find a class of Hamiltonian functions such that solutions q ( t )  
obtained frqm the set (1.5') are the same as those that come from (1.2) and (1.5). All 
the Hamiltonian functions of this class are able to describe equivalently (Espindola 
et a1 1986) the given non-holonomic system and, in this sense, following the usual 
nomenclature (Hojman and Harleston 198 1) they will be called s-equivalent Hamil- 
tonians. 

4 = F,(q, 4, t ) .  

In 0 2 we describe our method; in 0 3 an example is given. 

2. The Hamiltonisation procedure 

Assume a non-holonomic system with a Lagrangian description (equations (1 . l)-(  1.5)). 
Denoting by 

H ( q ,  PI t )  

41 = J H I d P ,  (2.1) 

a member of the desired class of s-equivalent Hamiltonians, we define 

and use these definitions to translate the dynamical description from configuration 
space to phase space by writing 

H = p , q , - L ( q ,  4, t ) = p , a H l a p , - L ( q , a H l a p ,  t )  (2.2) 

@,&, 4 )  = 0 =@,A, a H / a p ) .  (2 .3)  

Equations (2.2) and (2.3) are first-order partial differential equations for the 
unknown function H ( q , p ,  1 ) .  Equation (2.2) has the solution (in fact, a complete 
solution) 

(2.4) H =Alp, - L ( q ,  A, t )  

where A, are, until now, arbitrary functions of the variables q,. 
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The corresponding Hamilton equations (2.1) are 

q .  I = A. I ‘  (2.5) 

The constraints (1.2) are now 

A, t )  = 0. 

Furthermore, from ( 1 . 5 )  we have 

qi = dAi/dt = (aAi/aqj)Aj +aA,/ar =f; (q ,  A, t ) .  (2.7) 

The unknown function Ai are determined by solving the system (2.6) and (2.7). 
(It must be noted that the phase space constraint (2.6) works advantageously, as 
holonomic constraints rather than its configuration space version (1.2) that are non- 
holonomic.) This is a system of first-order partial differential equations for the unknown 
functions Ai, which in general is easy to solve (Courant and Hilbert 1962). 

The second set of Hamilton equations is 

As a first remark about our procedure we mention that elimination of the pI and 
p l  are no longer required to go back to configuration space as it was previously pointed 
out when s-equivalent Hamiltonians are defined. Now we only need to use half of 
the Hamiltonian equations, namely (2.5). Actually this was done when equations (2.7) 
were written. In this sense our method can be viewed geometrically as a particular 
construction of the orbits in phase space in such a manner that, when projecting it in 
configuration space, we have the usually accepted orbits for the given non-holonomic 
system. We observe that we have not worried about defining the momenta p I .  

In fact, the usual definitions 

pi = aL/aqi (2.9) 

are not suitable for non-holonomic systems due to the lack of a correct Lagrangian 
for describing the system. This is the reason why we do not have 

p i  = aL/aql (2.10) 

in equations (2.8). Equations (2.8) define the momenta whenever necessary. For our 
present purpose there is no need to consider these equations. 

As a second remark we mention that, after solving the system for the functions Ai, 
a knowledge of the constants of motion will be arrived at-a welcome additional result. 
Examples of this feature will be given in the next section. 

3. Examples 

As an example let us consider the following non-holonomic system (Gantmacher 1970) 

L( X, y, e, X, j ,  e )  = X2 + j 2  + :A e* - 2gy (3 .1)  

@ = i s i n  e - j c O s 8 = 0 .  (3.2) 

( A  and g are constants), 
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The orbits in the configuration space are given as the solution of the system 

x = -[(xi + g )  sin e cos e + ji sin’ e] 
$ = (x i  + g )  cos’ e + p i  sin e cos e - g  

Q = 0. 

It is straightforward to verify that 

x = ( g o  + g sin e COS e - 2B sin 0)/2A2+ D 

Y = ( - ~ c o s ’  ~ + ~ B c o s  8)/2A2+F 

O=At+C 

(where A, B, C, D and F are constants), 

H = ( p , + e V  tan f?)A,+A,p,-Af; sec’ e--iAA’,+2g,v 

and (cf equations (2 .7) )  A,, a ,  are obtained from 

(3 .3)  

(3.4) 

(3.5)  

aA, aA, JA,  A,-+ A,- tan 6 + A,-- = -AxAe tan 0 - g sin e COS e 
ax ae 
aA, aA, 8 Aa A,- + Ax- tan 6 + Aa- = 0. 
ax JY ae  

Solving this system we obtain 

A, = Cl 

g cos e-A,A, sec 8 = C, 

yAi + A,A, - i g  COS’ 8 - g / 4  = C3 

XAi- AaA, tan e+g[(sin28)/2-8]/2= C4 

where C, , C2, C3 and C4 are constants. Hence, by writing 

Cl = F (  c3 9 C,) 

C3= G(C3,  C4) 

with F and G arbitrary functions, we may write 

A, = F(yAi+ A,A, - ( g / 2 )  cos’ 6 - g / 4 ,  xA; - AaA, tan 8 + ( g / 4 )  sin 2 8  - g 8 / 2 )  

g COS e - A,Ax sec e = G(yAi + A,A, - ( g / 2 )  COS’ e - g / 4 ,  x A ~  
(3.6) 

- A,A, tan 0 + ( g / 4 )  sin 2 8  - g e / 2 ) .  (3 .7)  
A particular solution can be selected: 

A, =constant = A 

A, = ( g  COS’ 6 - B COS @ ) / A  B = constant. 

With this solution we have 

H=(p ,+p , , tanB)(gcos*e-Bcos  O)/A+Aps 

- ( g  COS’ 8 - B  COS 8)2(sec’ 8)/A2-AA2/4+2gy. 
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The canonical Hamiltonian equations can now be given explicitly. Half of them are 

1 = (g COS* 0 - B COS O)/A 

j = (g sin 0 cos 0 - B sin O)/A 

h = A  

and it is easily seen after integration that we have the solutions (3.4). 

motion for the non-holonomic system. In the present case they are 
As a final remark we observe, as before, that we have also obtained constants of 

F~ = e 
F2 = g cos 0 - 61 sec 0 

F , = y e 2 +  tk-g(COs2 0) /2-g/4 

F4 = xe2 - ex tan 0 + (g/4) sin 20 - gO/2. 

4. Final remarks 

Our main result (2.4) exhibits the Hamiltonian, for a non-holonomic system, as a linear 
function of the momenta p , ,  i.e., a singular system (in Dirac’s nomenclature), as it 
must be, taking into account a previous result (Galvlo and  Negri 1983). 

Another family of equivalent Hamiltonians is given by 

f i ( Q ,  P ) = P i A i ( Q ) + G ( Q )  

where G is an  arbitrary function (affecting only the definition of the momenta p i ) .  If 
the functions A, are the ones previously defined, this Hamiltonian will lead to the 
same orbits in configuration space. In this sense we could say that this fi and the 
Hamiltonian previously obtained are related by some ‘gauge transformation’. We shall 
analyse transformation properties of this theory in a forthcoming paper. 
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